User-agent: Mediapartners-Google Larang:

Thursday, April 5, 2012

Electron versus conventional flow

| Thursday, April 5, 2012 | 0 comments

When Benjamin Franklin advanced his single-fluid theory of electricity, he defined “positive” and
“negative” as the surplus and deficiency of electric charge, respectively. These labels were largely
arbitrary, as Mr. Franklin had no means of identifying the actual nature of electric charge carriers
with the primitive test equipment and laboratory techniques of his day. As luck would have it,
his hypothesis was precisely opposite of the truth for metallic conductors, where electrons are the
dominant charge carrier.
This means that in an electric circuit consisting of a battery and a light bulb, electrons slowly
move from the negative side of the battery, through the metal wires, through the light bulb, and on
to the positive side of the battery as such:

Unfortunately, scientists and engineers had grown accustomed to Franklin’s false hypothesis long
before the true nature of electric current in metallic conductors was discovered. Their preferred
notation was to show electric current flowing from the positive pole of a source, through the load,
returning to the negative pole of the source:



This relationship between voltage polarity marks and conventional flow current makes more
intuitive sense than electron flow notation, because it is reminiscent of fluid pressure and flow
direction:

If we take the “+” sign to represent more pressure and the “-” sign to represent less pressure,
it makes perfect sense that fluid should move from the high-pressure (discharge) port of the pump
through the hydraulic “circuit” and back to the low-pressure (suction) port of the pump. It also
makes perfect sense that the upstream side of the valve (a fluid restriction) will have a greater
pressure than the downstream side of the valve. In other words, conventional flow notation best
honors Mr. Franklin’s original intent of modeling current as though it were a fluid, even though he
was later proven to be mistaken in the case of metallic conductors where electrons are the dominant
charge carrier.

0 comments:

:)) ;)) ;;) :D ;) :p :(( :) :( :X =(( :-o :-/ :-* :| 8-} :)] ~x( :-t b-( :-L x( =))

Post a Comment

 
© Copyright 2010. yourblogname.com . All rights reserved | yourblogname.com is proudly powered by Blogger.com | Template by o-om.com - zoomtemplate.com